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Abstract
In many simultaneous localization and mapping (SLAM) systems, the map of the environment grows over time as the robot

explores the environment. The ever-growing map prevents long-term mapping, especially in large-scale environments. In

this paper, we develop a compact cognitive mapping approach inspired by neurobiological experiments. Mimicking the

firing activities of neighborhood cells, neighborhood fields determined by movement information, i.e. translation and

rotation, are modeled to describe one of the distinct segments of the explored environment. The vertices with low

neighborhood field activities are avoided to be added into the cognitive map. The optimization of the cognitive map is

formulated as a robust non-linear least squares problem constrained by the transitions between vertices, and is numerically

solved efficiently. According to the cognitive decision-making of place familiarity, loop closure edges are clustered

depending on time intervals, and then batch global optimization of the cognitive map is performed to satisfy the combined

constraint of the whole cluster. After the loop closure process, scene integration is performed, in which revisited vertices

are removed subsequently to further reduce the size of the cognitive map. The compact cognitive mapping approach is

tested on a monocular visual SLAM system in a naturalistic maze for a biomimetic animated robot. Our results demonstrate

that the proposed method largely restricts the growth of the size of the cognitive map over time, and meanwhile, the

compact cognitive map correctly represents the overall layout of the environment. The compact cognitive mapping method

is well suitable for the representation of large-scale environments to achieve long-term robot navigation.
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Introduction

Spatial cognition endows mammals with impressive long-

term navigation capabilities, such as homing (Mittelstaedt

and Mittelstaedt 1980), or migrating between seasonal

habitats (Naidoo et al. 2016). Mammals surpass robots

with better by far navigation performance in large-scale

dynamic environments. It is believed that mammals can

learn spatial information from the surrounding environ-

ment to form an internal map-like representation in the

brain, namely cognitive map, to help mammals navigate in

the complex environments (Tolman 1948).

Neurobiological studies have discovered that the hip-

pocampal-entorhinal neural circuit plays a key role in

spatial cognition. Neurons in these areas increase and

decrease in electrical activities to encode various allocen-

tric information of the animal while navigating in envi-

ronment (McNaughton et al. 2006; Moser et al.

2008, 2015). These neurons, including place cells (O’Keefe

and Dostrovsky 1971), grid cells (Hafting et al. 2005),

head direction cells (Taube et al. 1990), speed cells (Kropff

et al. 2015), boundary cells (Lever et al. 2009), and etc.,

provide detailed representations of self and environments.

In the behavioral level, coarser and more abstract infor-

mation contributes to spatial navigation. Humans often

reason about space in high-level concepts, i.e.
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topographical orientation. A typical example goes like:

turn left at the supermarket, down the road, and turn right at

the convenience store. In recent years, neurons, called

neighborhood cells, are found in the perirhinal cortex,

providing strong support for topographical orientation (Bos

et al. 2017). Neighborhood cells fire persistently in the

large area of the environment, and encode navigation

behavior at larger scales. Neighborhood cells, therefore,

help the brain differentiates distinct segments of the envi-

ronment, a function beyond detailed representations pro-

vided by place cells and grid cells.

In the field of robotics, mapping the environment is a

prerequisite for autonomous mobile robots to carry out

tasks like transportation, delivery, search and rescue,

especially in indoor or underground environments where

global positional information, such as GPS, is not easily

available. Algorithms were developed to construct a

topological graph mapping the structure of the environ-

ment. Based on topological graphs, robots are able to plan

trajectories and navigate to goal locations. While, in most

of the existing graph-based methods, the complexity of

maps grows quickly with the length of the robot’s trajec-

tory (Kretzschmar and Stachniss 2012). As new vertices

and edges are constantly added to the map, the demand for

computational time and memory footprint grows over time,

preventing the applications in long-term mapping. So,

approaches to control the size of the map, i.e. compact

map, are key to practical robotic applications that involve

continuous exploration in environments (Cadena et al.

2016).

The mechanisms of mammalian spatial cognition show a

great potentiality to inspire novel algorithms to help to

improve the navigation ability of mobile robots. In this

study, following our previous model (Zeng and Si 2017),

which represent the allocentric position and orientation

within the environment with grid cells, and head direction

cells, we focus now on how compact cognitive map effi-

ciently encodes the surrounding environments and sparsely

store information when a mobile robot explores a new

environment.

To develop compact cognitive map representations that

enable long-term navigation, we set the basis for several

neurobiological findings. First, the novelty or discontinuity

in the incoming sensory streams increases the firing

activities of CA1 neurons in the Hippocampus (Larkin

et al. 2014). This novelty signal is important for neigh-

borhood cells to group information in chunks and only

encode behaviorally relevant regions in the environment.

Second, mammals rethink where they are, as manifested by

the awake replay of neural activities during navigation

(Carr et al. 2011). Replay can be initiated by sensory

inputs. The reactivation of cell assemblies enables map

learning and reorganization of the cognitive map. Due to

the fact that awake replay is triggered only sparsely, the

optimization of a cognitive map could be performed for

each loop closure cluster, in which new sensory informa-

tion should be integrated into the existing cognitive map.

Third, place cells and neighborhood cells show robust fir-

ing activities. When familiar places are revisited, the same

population of cells is activated again. There is no need to

recruit extra cells for the encoding of familiar places. In a

compact cognitive map, scenes from familiar places should

be integrated without adding new vertices.

Inspired by neural mechanisms of spatial cognition, we

develop in this paper a pragmatic compact cognitive

mapping solution to control the growth of the size of the

cognitive map. Compared with other approaches (Ball

et al. 2013; Zeng and Si 2017; Zeng et al. 2020), the main

contribution of this paper is four-fold.

First, we introduce a concept of neighborhood fields to

segment the explored environment, mimicking the high-

level representations of neighborhood cells. The sizes of

neighborhood fields are dependent on movement informa-

tion, and in turn, determine whether new vertices and edges

are added to the cognitive map or not. Since the neigh-

borhood field is a mechanism to sparsify the cognitive map,

there is no need to partition the environment to reduce the

number of vertices in the map. This pragmatic approach

allows us to gently trade accuracy for computational effi-

ciency including computational time and memory foot-

print, yet still, keep the topology information and the

fidelity of representation of the environment.

Second, we formulate the optimization of the cognitive

map as a constrained robust non-linear least squares

problem. The objective is to minimize the inconsistency

based on the local geometrical relationships experienced

during exploration. The optimization is triggered once for

each loop closure cluster, in which a familiar place is

revisited and odometry error could be minimized most

efficiently given the new information of previously expe-

rienced places.

Third, during loop closure, the multiple correspondences

between currently experiencing places and previously

experienced places are clustered into one edge. The clus-

tering criteria are based on time information. The cluster-

ing of overlapping vertices and edges into one connection

reduces the redundancy of the cognitive map. In addition,

during loop closure, redundant vertices and edges are

removed to ensure no extra neural coding is added to

represent the familiar places.

Fourth, we develop a monocular visual SLAM system to

evaluate the proposed compact cognitive mapping algo-

rithm. The mapping performance of this monocular visual

SLAM system is demonstrated on an iRat rodent-sized

robot platform in a naturalistic maze (iRat 2011 Australia

dataset) (Ball et al. 2013). Experimental results showed
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that the size of the map is well controlled by our approach

over time. The proposed algorithm is suitable for compact

cognitive mapping to support long-term robot navigation.

The rest of this paper is organized as follows. We

describe our approach in ‘‘Method’’ section. ‘‘Experimental

results’’ section presents the experimental results. We

discuss results and future works in ‘‘Discussion’’ section. A

brief conclusion is given in ‘‘Conclusion’’ section.

Related work

In the context of the SLAM problem, many effective

approaches have been proposed to solve robot mapping. Lu

and Milios (Lu and Milios 1997) first introduced global

map optimization using a pose graph. The graph-based

approach models the poses of the robot as vertices, and

spatial constraints between poses as edges in a graph. In

this standard graph-based approach, the size of the map

expands quickly, while the robot explores new areas. As a

result, the demand for storage and computational resources

increase rapidly. In the worst case, the standard graph-

based approach has quadratic growth of memory usage

with the number of variables when direct linear solvers are

used. There are great efforts to improve the efficiency of

graph-based mapping algorithms. The sparsity structure of

the matrix in the normal equations is used to enable the fast

linear online solvers. Many SLAM libraries, such as g2o

(Kümmerle et al. 2011), GTSAM, Ceres (Agarwal et al.

2012), are available to solve this problem with tens of

thousands of variables in just a few seconds. However,

even using iterative linear solvers, memory consumption

grows linearly with the numbers of variables. Revisiting

the same place many times makes this situation more

complicated. As more vertices and edges are continuously

added to the same spatial area, this approach becomes less

efficient. For now, there are few works to solve the ques-

tion of how to store the map for long-term exploration

(Cadena et al. 2016). Therefore, it is valuable to achieve a

long-term mapping solution that can control, or at least

reduce the growth of the size of the map.

One of the most important ways to reduce the com-

plexity of the map is the vertex and edge sparsification,

which trades the accuracy of the map for memory and

computational efficiency. Information-based compact pose

SLAM algorithm (Ila et al. 2010) was proposed in an

information-theoretic manner to reject redundant vertices

and add informative measurements to the map. An infor-

mation-based criterion (Kretzschmar and Stachniss 2012)

was introduced to determine which laser scan should be

marginalized in pose global optimization, which retains the

sparsity for laser-based 2D pose graphs. The generic linear

constraint factors (Carlevaris-Bianco and Eustice 2013)

and the nonlinear graph sparsification (Mazuran et al.

2016) were proposed to achieve a sparse blanket based on

the Markov blanket of a marginalized vertex.

Another class of method was proposed focusing on

addressing temporal scalability of standard pose graph

(Johannsson et al. 2013). This method avoids adding

redundant vertices and edges before the global optimiza-

tion of the graph. Demonstrated on a binocular visual

SLAM system in indoor environments, this method is an

efficient solution for medium-scale environments, such as

buildings.

A map pruning method was proposed in a biologically

inspired monocular visual SLAM system, RatSLAM

(Milford and Wyeth 2010). The pruning method removes

experiences in map regions where the density of experi-

ences exceeds a threshold. When revisiting a familiar view,

the current location of the robot is assigned to the vertex

corresponding to the familiar view, instead of adding

duplicate experience vertices to the map. During loop

closure, the experience map is optimized by iterative map

relaxation after each loop closure edge is added to the map,

and may results in low optimization efficiency since there

are often dozens of similar loop closure edges that could be

established in one loop closure event.

Method

In this section, we develop a brain-inspired compact cog-

nitive mapping approach to control the size of the cognitive

map over the exploration time. The proposed compact

mapping algorithm includes several major computational

blocks that work together. First, the global optimization of

the cognitive map is formulated as a solution of non-linear

least squares problems. A sparse solver is applied to solve

the normal equations with high-performance Ceres Solver

(Agarwal et al. 2012). Second, when the robot comes

across novel image views, inspired by neighborhood cells,

neighborhood fields are used to drive the recruitment of

new vertices and edges. Third, according to the cognitive

decision-making of place familiarity, the time intervals

between loop closure edges are applied to cluster loop

closures edges, and further, the global optimization is

carried out to satisfy the combined constraint of the whole

cluster. After non-linear least-squares optimization, short

edges of the length below a threshold are merged to filter

noises from movement and measurement. Finally, when

the robot revisits familiar visual scenes, redundant vertices

corresponding to the same location are merged. The

familiar scenes are integrated. The overview of the brain-

inspired compact cognitive mapping algorithm is shown in

Algorithm 1.
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Formulation of cognitive map optimization

The optimization of the cognitive map is formulated as a

constrained robust non-linear least squares problem

(Agarwal et al. 2012). Vertices represent locations in the

environment. Edges are used to model spatial constraints

between vertices. Sequential edges arise from odometry

measurements while the robot traverses the vertices. And

loop closure edges arise from visual template matching,

which is a process to mimic visual recognition of familiar

places (Zhao et al. 2019). Formally, optimization of the

cognitive map is to find a solution to

min
e

1

2

X

i;j

qi fi ei; ej; eij
� ��� ��2

� �
; ð1Þ

where e is the set including all vertices ei; 1� i�N. N is

the number of vertices in the cognitive map. ei ¼ ðxi; yi; hiÞ
is the vertex state, i.e. spatial coordinates and orientation of

the robot when it passes the place. The objective function is

minimized given the constraints defined by edges eij. eij ¼
ðxij; yij; hijÞ describes the transition from vertex ei to ej,

obtained from movement information or visual template

matching. qi fi ei; ej; eij
� ��� ��2

� �
is a residual block, where

fið�Þ is a cost function. qi is a loss function, which can be

applied to decrease the influence of outliers on the global

optimization of non-linear least squares problems. Here,

Huber Loss is used, which can be defined as

qðsÞ ¼
s quads� 1

2
ffiffi
s

p
� 1 s[ 1

(
: ð2Þ

More specifically, cost function fið�Þ for a pair of vertices ei
and ej connected by an edge eij is computed by

fi ei; ej; eij
� �

¼ ej � ei � eij½ � ¼

xj � xi � xij

yj � yi � yij

hj � hi � hij

2
664

3
775

¼

xj � xi � dij � cosðhi þ hij þ hrelativeÞ

yj � yi � dij � sinðhi þ hij þ hrelativeÞ

hj � hi � hij

2
664

3
775;

s.t. � p� hi\p; �p� hj\p;

ð3Þ

where dij is the distance between ei and ej. hrelative is the

relative angle between matched visual templates and cur-

rent visual scenes (Ball et al. 2013). The values of hi and hj
are limited to the range ½�p; pÞ.

The constrained optimization problem is solved by

Ceres Solver (Agarwal et al. 2012). It is an open-source

C?? library for modeling and solving large complicated

optimization problems, especially for Non-linear Least

Squares problems. During mapping, once a loop closure is

detected, Ceres Solver is called to compute a solution to

Eq. (1) given the geometric information brought by the

new clustered edge in ‘‘Clustering loop closure edges’’

section.

Adding sparse vertices through neighborhood
fields

To support topographical orientation, mammals are able to

represent environments at a high level. In this paper,

neighborhood cells (Bos et al. 2017) are modeled to dif-

ferentiate distinct segments of the environment. The firing

fields of neighborhood cells, called neighborhood fields,

are introduced to describe distinct segments of the envi-

ronment. Although in the real situation, the neural repre-

sentation of a distinct segment may be influenced by visual

marks, odor, sound, movement, etc., here, in the cognitive

map model, we only consider movement information to

determine whether the neighborhood field is strong enough

to form a distinct segment. The movement information of

mammals includes translation d and rotation h. Translation
d stands for the distance in meters traversed by the robot

between the tentative vertex and the previous vertices.

Rotation h stands for the absolute amount of rotation of the

robot’s head direction in radians between the two vertices.

The neighborhood field is defined by

gðd; hÞ ¼ ð1þ a � dÞð1þ b � hÞ; ð4Þ
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where, a is the weight for translation d, and b is the weight

for rotation h. gðd; hÞ is high either the translation or the

rotation is large, therefore it is an indicator of novelty. If

the robot makes large enough movement, gðd; hÞ compar-

ing with the previous vertex is novel enough to create a

new neighborhood field, i.e. gðd; hÞ[ d, where d is the

threshold, and a new vertex will be added to the cognitive

map. In other words, translation d and rotation h jointly

decide whether new information is added to the cognitive

map. If the translation d is large enough to provide novel

information, a new vertex is also added to the cognitive

map, regardless of rotation h. When the robot makes a turn,

new views should be remembered, even if the translation is

small.

We further illustrate in details the sparsification tech-

nique using the concept of neighborhood field. Compared

with the standard approach (Ball et al. 2013; Zeng and Si

2017), if the neighborhood field gðd; hÞ does not meet the

threshold to create a new vertex, the tentative vertex eiþ1 is

removed, and edges ei;iþ1 and eiþ1;iþ2 are merged into ei;iþ2

(Fig. 1). The threshold is an inhibition mechanism. The

neighborhood field of the tentative vertex eiþ1 is not strong

enough to overcome the inhibition from the previous vertex

ei, and therefore is not added to the cognitive map. If many

consecutive vertices do no overcome the inhibition, i.e.

neighborhood field activities below threshold, they are

removed and their corresponding edges are merged into

one, which is shown in Fig. 2.

Clustering loop closure edges

In the hippocampus, ‘‘time cells’’ encode successive

moments during an empty temporal gap between key

events (MacDonald et al. 2011; Eichenbaum 2014).

Inspired by time cells, time intervals are introduced to help

search matched visual scenes for clustering. According to

the perceptual decision-making process, whether the ani-

mal is located in a previously visited place is decided by

consecutive familiar scene views in their memory, there-

fore loop closure edges are clustered into one edge. After

enclosing the clustered edge into the cognitive map, opti-

mization of the cognitive map is performed once, so that

there is no need to perform optimization for every loop

closure edge.

An incremental procedure is used to group loop closure

edges into a cluster based on timestamps. When the first

loop closure edge is created, a cluster is initialized and the

start time (tstart) of the current cluster is the timestamp of

the first loop closure edge. If the time interval between the

current loop closure edge (tend) and the previous loop

closure edge (tend�1) is smaller than a threshold of time

interval (Tinterval), the current loop closure edge would be

added into the current cluster. Otherwise, a new cluster

would be created. If the total time between the current loop

closure edge (tend) and the first loop closure edge (tstart) is

greater than a threshold of total time (Ttotal), the current

loop closure edge would be added into a new cluster. An

illustration of clustering is shown in Fig. 3. Cluster 1 is a

normal situation in which time interval and total time are

both greater than the threshold of time interval (Tinterval)

and total time (Ttotal) relative to the next loop closure edge,

which is segmented into the next cluster. Total time longer

than threshold leads to the division of consecutive loop

closure edges into cluster 2 and cluster 3. Since time

interval is longer than the threshold, cluster 4 and cluster 5

are created.

A

B

Fig. 1 Adding sparse sequential vertices and edges using neighbor-

hood field. a Standard cognitive map with new sequential vertices and

edges; b Compact cognitive map after removing vertices whose

neighborhood fields are weak

A

B

Fig. 2 Adding a number of consecutive sequential vertices. a shows

standard cognitive map; b shows compact cognitive map
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Scene integration

When mammals revisit familiar environments, the current

scene would be integrated with previous old scenes stored

in the memory. For the robot, to achieve long-term map-

ping, one critical issue is to control the size of the cognitive

map to be bounded by the size of the explored environment

and be independent of the exploration time. Equivalently,

the size of the map does not grow unless the unknown

environment is explored. Therefore, when the robot revisits

familiar image views, redundant vertices should not be

added into, and visual scenes should be integrated consis-

tently into the old scenes. Scene integration is performed

after the optimization of the cognitive map, different from

the method that avoids adding redundant vertices to begin

with Johannsson et al. (2013).

We illustrate this reduction approach in Fig. 4. Dashed

thick arrows stand for newly added loop closure edges for

the current moment. In Fig. 4a, new vertex ei;iþ1 is found to

be the same location as vertex ek, therefore it is removed,

and the edges ei;iþ1, eiþ1;iþ2 and eiþ1;k are merged into two

edges ei;k and ek;iþ2. Situation shown in Fig. 4b often

happens, where multiple vertices connect to the same

vertex. After scene integration, the multiple vertices are

reduced to one vertex, and the edges are merged accord-

ingly. As for Fig. 4c, the redundant vertex ei;iþ1 is inter-

fused with vertex ek, and its incoming and outgoing edges

are removed.

Removing short edges

When the robot moves around, due to motion noises and

measurement errors, redundant vertices might be created.

These vertices represent the same information. One of

these vertices will be kept, and the others are removed. The

transitions between these vertices are small relative to the

noises and errors, and convey low topological information.

After loop closures, the extra constraints given by these

vertices need to be removed. Figure 5 shows how these

additional vertices and edges are removed according to the

threshold of edge length.

Fig. 3 Clustering loop closure edges. According to the thresholds of

the time interval and total time, loop closure edges are clustered. The

solid line shows the trajectory of the robot, on which the arrows are

the movement directions. The parallel dashed arrows are the loop

closure edges from new vertices to old vertices

A

B

C

Fig. 4 Scene Integration. Standard cognitive map is on the left.

Compact cognitive map is on the right. a–c show three different cases

we remove revisited vertices. Dashed thick arrows stand for the newly

added loop closure edges
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Visual SLAM system

Our compact cognitive mapping approach is demonstrated

on a brain-inspired visual SLAM system. The presented

visual SLAM system is improved from our previous work

described in Zeng et al. (2020). Here, we employ the above

mentioned compact cognitive mapping technique to

replace the graph relaxation algorithm for the experience

map (Ball et al. 2013).

Experimental results

In this section, we demonstrate our compact cognitive

mapping technique on iRat Australia dataset (Ball et al.

2010), a publicly available open-source dataset. Intelligent

Rat animate technology, iRat, is a small mobile robot

developed to study navigation and embodied cognition for

robotic and neuroscience researchers. iRat has a similar

size and shape like a rat. Images of the iRat Australia

dataset are obtained by a web camera on the iRat robot.

The iRat ROS bag provides camera images, odometry

messages, and overhead images.

We compare our approach with the method in which no

vertices and edges are discarded. The latter is referred to as

the standard method and the corresponding cognitive map

is referred to as the standard cognitive map. Compact

cognitive mapping processes with varying sparsity levels

are shown in video s1, s2, s3 in the supplementary

materials.

Cognitive map

To better show the ability of our approach to achieving

vertex and edge sparsification, we mainly consider the

influence of two steps in the algorithms: adding sparse

sequential vertices and edges through neighborhood fields,

and scene integration. Apart from reducing the number of

vertices and edges, clustering loop closure edges also

reduce the frequency of executing batch global optimiza-

tion. Batch global optimization is parallelized based on

OpenMP and ensures that the optimization problem can be

quickly solved. Since the frequency of executing batch

global optimization is not high, the cognitive mapping

process is able to run in real-time on a PC, even for large-

scale environments. As for the step of removing short

edges, it is applied mainly to reduce the possible noises.

In order to qualitatively compare the compact cognitive

maps with the actual environment, the overhead image of

the explored environment is shown in Fig. 6a, together

with the cognitive maps constructed by different methods

(Fig. 6b–d). The standard cognitive map created by the

visual SLAM system is shown in Fig. 6b. Green circles are

the vertices of the cognitive map. Blue thin lines are edges

between connected vertices. There are 3911 vertices and

5184 edges entailed in the standard cognitive map. The

standard mapping process is shown in video s1 in supple-

mentary materials. The process of clustering loop closure

edges and batch global optimization can be clearly seen

from the video s1 in the supplementary materials.

A

B

C

Fig. 5 Removing short edges. Standard cognitive map is at the top.

Compact cognitive map is at the bottom. a Edge eiþ1;iþ2 length is

smaller than threshold in (a). Vertex eiþ1 is removed. Edge ei;iþ1 and

edge eiþ1;iþ2 are merged into ei;iþ2. b, c There exist multiple

constraints between vertex eiþ1 and eiþ2. We remove edges ei;iþ1 and

eiþ1;iþ2, and vertex eiþ1
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When scene integration kicks in cognitive mapping, the

total number of vertices in the compact cognitive map

reduces from 3911 to 2191, edges from 5182 to 2152.

Although the number of vertices in the compact cognitive

map (Fig. 6c) is reduced nearly twice compared with the

number of vertices in the standard cognitive map (Fig. 6b),

the compact cognitive map resembles the standard cogni-

tive map almost identically, as can be seen by naked eyes.

Due to the integration of scenes of the same places, the

redundant verities are substantially reduced while keeping

the correct topology of the environment. The mapping

process corresponding to Fig. 6c is shown in video s2 in

the supplementary materials.

In addition to scene integration, when the step of sparse

vertices through the neighborhood field is adopted, the

cognitive mapping process witnesses a further reduction in

the number of vertices and edges. Compared with the

standard cognitive map, the number of vertices is reduced

from 3911 to 497, edges from 5182 to 602 (Fig. 6d), a

reduction factor about eight. Here, neighborhood fields are

employed to confine the distance between two vertices and

restrict the angle of rotation. The same weights for trans-

lation a ¼ 10:0 and rotation b ¼ 10:0 are used to describe

movement information. The threshold of neighborhood

fields is tuned to d ¼ 3:746 to determine whether a new

vertex is added to the cognitive map. Although part of the

compact cognitive map in Fig. 6d looks less smooth as the

cognitive maps in Fig. 6b, c, it correctly represents all loop

closures and intersections of the environment. The compact

cognitive map built is therefore consistent with the stan-

dard cognitive map.

A B

C D

Fig. 6 Cognitive Map. Green dots are vertices of the cognitive map.

Blue thin lines are edges between connected vertices. a The overhead

view of the explored environment. b shows the standard cognitive

map with 3911 vertices and 5184 edges. c shows the compact

cognitive map with 2191 vertices and 2152 edges by the step, scene

integration. d shows the compact cognitive map with 497 vertices and

602 edges by steps: adding sparse vertices and edges, and scene

integration. (Color figure online)
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All in all, as can be seen in Fig. 6, compared with the

overhead view of the explored environment in Fig. 6a,

except small rotation offset, the compact cognitive maps

can successfully represent the overall layout of the

explored environment (Fig. 6c, d), and gain big improve-

ment of efficiency than standard cognitive map (Fig. 6b).

Size of cognitive map

Depicted in Fig. 7, the number of vertices and edges in the

cognitive map grows as a function of exploration time. For

the standard cognitive map, since no vertices and edges are

discarded, it has the highest rate of growth (dark lines with

star markers � in Fig. 7a, b). The number of vertices and

edges increases to 3911 and 5182 in the standard cognitive

map, respectively.

Adding the step of scene integration, the number of

vertices and edges is reduced to 2191 and 2152 respec-

tively, which is described by a blue line with circular

markers (o). The number of vertices and edges increases

with a slower slop, as similarly reported in Ball et al.

(2013).

Red lines with diamond markers (e) show the number

of vertices and edges of the final compact cognitive map.

Controlled by two steps, adding sparse vertices and edges,

and scene integration, the size of the cognitive map climbs

up in time with the slowest rate among the three methods,

only reaching to 497 vertices and 602 edges.

Clustering of loop closure edges

As loop closure edges are created in the experience map,

they are incrementally assigned to an existing cluster when

they satisfy the requirements shown in Fig. 3, or to a new

cluster. Every cluster grows dynamically, which allows to

group loop closure edges with a similar trajectory together.

In our experiment on iRat Australia dataset, we consider

the threshold of total time Ttotal for a cluster to be less than

100 seconds, and the threshold for loop cluster edge time

interval Tinterval to be longer than 2 seconds for a new

cluster. Examples of clustering loop closures are shown in

Fig. 8. The sizes of the cluster are different from each

other, which depends on the trajectory of the robot. For
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Fig. 7 Size of cognitive map when exploring the environment.

Legends standard, compact 1, and compact 2 correspond to cognitive

maps in Fig. 6a–c, respectively. a The number of vertices. b The

number of edges

Fig. 8 Clustering of loop closure edges. Six loop closure clusters of

variaous cluster sizes are selected throughout the mapping process
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each cluster, only once batch global optimization is

required to ensure computational efficiency.

Discussion

In this study, we proposed a brain-inspired compact cog-

nitive mapping solution to control the growth of the size of

the cognitive map. We implemented our solution in a

monocular visual SLAM system, and demonstrated that our

cognitive mapping system could successfully build a

compact cognitive map and correctly represent the overall

layout of the environment (see video s1, s2, and s3 in the

supplementary materials).

Our approach allows us to gently trade accuracy for

computational efficiency. Neighborhood fields, which are

inspired by neighborhood cells, can be employed to adjust

the sparsity of the cognitive map, as can be seen in Fig. 6b,

c. Although the size of compact cognitive maps can be as

small as one-eighth of that of the standard cognitive map

(Fig. 7), the compact cognitive maps correctly represent

the overall layout of the environment (Fig. 6b, c v.s. a).

Also, compared with the result of OpenRatSLAM on the

iRat dataset, the size of vertices in our compact cognitive

map is smaller than one-fifth of the size of vertices (497

v.s. about 2800) in Ball et al. (2013).

In our approach, we first formulate the global opti-

mization of the cognitive map as a non-linear least-squares

problem. Compared with graph relaxation (Ball et al.

2013), a fast sparse solver is applied to solve the non-linear

least squares problem with high efficiency using Ceres

Solver. Second, clustering loop closure edges are used to

group loop closure edges with similar trajectory together.

The solution to the global optimization problem is com-

puted only once for each cluster, which greatly improves

operational efficiency. Parallel processing with multicores

based OpenMP boosts further the computational speed of

global optimization. Third, inspired by neurobiological

experiments, a method based on neighborhood fields to

sparsify sequential vertices and edges, is proposed to per-

form the compact cognitive mapping. As the neighborhood

fields are determined by movement information including

translation and rotation, along a straight road, the neigh-

borhood field increases slowly, meaning that less infor-

mation is needed to remember. Whereas, when making a

turn, such as at a crossroad, the neighborhood field

increases rapidly, indicating that more information should

be retained. Finally, revisiting the same place should not

engender multiple spatial representations, but visual scenes

from multiple visits should be integrated into the same

vertex for robust maintenance of the map. Scene integra-

tion would not increase the size of the cognitive map,

unless the unknown environment is explored, and is

effective to conserve the size of the cognitive map when

exploration is not expanded.

Compared with the pose graph compressed method

based on information-theoretic measure (Ila et al. 2010;

Kretzschmar and Stachniss 2012), our approach is not

theoretically derived, but pragmatic and efficient for

building cognitive maps. Temporally scalable stereo-vi-

sion-based SLAM by Johannsson and Leonard (Johannsson

et al. 2013) is also relevant to our approach. Their method

avoids adding redundant vertices right from the beginning

to reduce the pose graph, and then iSAM is used to perform

map state estimation. In our approach, we cluster loop

closure edges, after optimization, then revisited vertices are

removed. And we formulate a nonlinear least-squares

problem to solve the global optimization using a general

fast non-linear least-square solver, i.e. Ceres Solver. A

brain-inspired monocular visual SLAM decreases the size

of the experience map by removing experiences to main-

tain one experience per grid square density by partitioning

the environment (Milford and Wyeth 2010). We achieve

the sparsification of the cognitive map by introducing the

concept of the neighborhood fields. The movement infor-

mation with topographical orientation is applied to sparsify

sequential vertices and edges in the cognitive map.

Besides, we also cluster loop closures edges and perform

batch optimization with parallel computing to ensure real-

time performance.

Several aspects of our study are worthy of further

exploration in order to be deployed on autonomous robots

in large-scale environment. First, our algorithm needs to be

tested for longer time in larger environments. Second, al-

though the loss function in map optimization reduces the

influence of outliers, it can not entirely guarantee the

quality of map estimation during the global optimization of

the cognitive map. Loop closure constraints should be

modelled to reject incorrect loop closures. More suppli-

cated methods for the representation of visual features

could be used to support robust place recognition and loop

closure.Third, objects are detected by proximity sensors,

and simple reflexive rules are used to avoid obstacles in

this study at the moment. In the future, active obstacle

avoidance algorithm should be integrated into the system,

to achieve flexible navigation in more complex environ-

ments such as city streets with moving objects like

pedestrians and vehicles.

Conclusion

In short, we proposed a brain-inspired compact cognitive

mapping system. Inspired by neurobiological experiments,

the concept of neighborhood field and scene integration are

applied to achieve sparsification of the cognitive map,
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without adding redundant vertices and edges into the

cognitive map. Imitating the way that mammals control the

size of the cognitive map, it is possible to develop practical

algorithms to store the map during the long-term operation

of the robot in complex, large-scale, and dynamic

environments.
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